
NOTATION 

Ggj, flow rate of "fresh" drying agent into j-th zone; Ggji, flow rate of "exhausted" 
drying agent of i-th zone into j-th zone; clj, c2ji, c3ji, constants used to "weight" dif- 
ferent kinds of expenditures; w, moisture content of material; k, drying coefficient; T, 
time; twet, tm, tlm, tt, tlt, t2g, temperatures of wet-bulb thermometer, of material along 
length of and at entrance to dryer, of transporting devices along length of and at entrance 
to dryer, and of "exhausted" drying agent; Ga, flow rate of cold air; d2, moisture content of 
"exhausted" drying agent; n, number of zones in dryer; x, xj_1, xj,coordinates of current, 
initial, and end points of j-th zone of dryer; a:-a32, constants; B, coefficient depending on 
mass composition of material; R~, hydraulic radius; At, drying potential; v, velocity of 
drying agent; F, cross-sectional area of dryer; Wcr, critical moisture content of material. 
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WAVE REGIME OF FILTRATION OF SUSPENSIONS 

E. V. Venitsianov UDC 532.546 

It is shown that a wave regime can exist for models of filtration of one-compo- 
nent and binary suspensions which take into account the formation of a deposit in 
stagnant and flowing regions of the porous bed. Theoretical formulas for the con- 
centration in the solution and deposit phases are obtained. 

i. Filtration of suspensions in a porous medium in order to purify solutions or extract 
components of the disperse phase is a common mass-transfer process. If clarification is ef- 
fected by adhesion throughout the porous bed without formation of a film on the filter sur- 
face and at a constant filtration rate, engineering methods of calculating the time of pro- 
tective action tpr of the filter and the head (H) loss time are based on two empirical rela- 
tions [i] : 

tpr= k l - - T ,  

H - -  ho (1) 
t h e - - - - ,  

m (2) 

which are applicable for sufficiently long beds and sufficiently long filtering cycles. A 
method of experimental determination of the constants contained in Eqs. (i) and (2) has been 
developed by technological simulation of the actual process [i]. 

Equation (i) was first proposed by Shilov [2] for calculation of sorption filters. It 
was subsequently shown in sorption theory that this equation is valid for a wave regime when 
a concentration front moving through the bed at constant velocity n = k -~ is formed, and 
that a sufficient condition for occurrence of the wave regime is convexity of the sorption 
isotherm [3]. In filtration dynamics, however, the question of the existence of a wave re- 
gime has not been investigated. In addition, models [4, 5] which generally have no wave 
regime are widely used. 
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We will establish sufficient conditions for the existence of a filtration wave regime, 
which will enable us to relate the empirical constants in Eqs. (i) and (2) to the physical 
parameters of the model and on this basis to propose more rational methods of engineering 
calculations of filters, and also to make more objective assessments of different filtering 
materials. 

2. The mathematical description of filtration of suspensions in a porous medium is based 
on experimentally investigated features of mass transfer of particles of the disperse phase 
to the bed surface (filtration kinetics) and the properties of the deposit (filtration stat~ 
ics). It has been shown [6, 7] that there are two types of deposit -- washed-out (type A) 
and not-washed-out (type B). The type A deposit is usually formed on the frontal parts of 
the grains washed by the jet component of the flow, while type B is formed mainly in stagnant 
zones where a circulation flow occurs [8, 9]. The ratio of the capacities of these zones is 
characterized by the parameter y = Pao/Ppo; it has been shown experimentally [6, 7, i0] that 
y << l. The kinetics is of the external-diffusion type. The ratio of the kinetic "activi- 
ties" of the filter zones is characterized by the parameter b = Ba/Bp. According to experi- 
ments [7], b >> i. For many suspensions it is also essential to take into account dynamic 
processes in the deposit, which is characterized by the model by the deposit aging parameter 

qo. 

A model based on consideration of the above properties of the filtration process was 
proposed for one-component suspensions in [7]. We write it in dimensionless variables 

Ou jr_~ Oqa (3) 
o-x _ b ~  + Oq p = o, 

OT 

Oqa _ b (u--  %), (4)  
? OT 

Oqp = o~0 (qp, qo) u, (5)  
OT 

where u = c/co, qa = Pa/Pao, qp = pp/ppo, X = Box/v , and T = BptCo/Ppo. Equation (3) repre- 
sents the balance of matter of the disperse pha~e, (4) represents the kinetics of formation 
of the type A deposit, mad (5) is the same for the type B deposit. The isotherm of the type 
B deposit is rectangular, and for the usual cases encountered in practice -- filtration of 
low-concentration suspensions -- the isotherm of the type A deposit is assumed to be linear. 
The aging of the deposit is taken into account by the function e(qp, qo): 

a = { 1  ~r  O ~ q p < ~ ;  qo/qp~r % ~ q p < l ;  0 ~r  q p =  1}. (6) 

We note that published methods are special cases of system (3)-(5). Thus, in the linear 
model of [4, 5] it is assumed that qp = 0. On the other hand, in the models of [ii, 12], it 
is assumed that qa = 0. These simplifications not only distort the physical picture of the 
process, but also lead to erroneous conclusions. We will S~how that when the two types of 
deposits are considered the filtration model can have a wave solution when the concentrations 
u, qa, and qp are functions of the wave variable ~ = X -- ~T, where ~ is the dimensionless 
wave velocity. The solution must satisfy asymptotically the following conditions: 

( - -c~)  = q a ( - ~ )  = qp(- -oo)  = 1, U ( ~ ) =  qa (oo) = qp ( ~ )  = .0 .  (7)  

On conversion to wave variables in system (3)-(5)we obtain the following system of dif- 

ferential equations : 
�9 . . 

u - -  crqp - -  cr?q a = O, 

- -  o '?q a = b (u  - -  qa) ,  

- -  O q p - -  ~ o  ( q p ,  qa) u .  

(8) 

(9) 

(io) 

Integrating (8) and taking (7) Into account we obtain the balance relation, which is 
satisfied along the whole wave, 

u = ~(~ + ?qa), (ll) 

and an expression for the dimensionless wave velocity: o = (i + y)-1 
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We eliminate u(~) from Eqs. 
phase plane (qp, qa): 

(9) and (i0) and, using (ii), we seek the solution in the 

In Eq. (12) 
tion 

dqa __ 

dqp 

dqa 
dqp 

the point o (Fig. i) 

can have two real roots. 
of coordinates 

(12) 
b(qp--qa)  when O ~ q p < q o ,  

V (qp + ?qa) 

b (qp - -  qa) q P--when qo ~ qp < 1. 
Vqo (qp + Vqa) (13) 

is a saddle point [13], since the characteristic equa- 

z ~ + (v - -  b) Z - -  (be + ~ )  = o 

Hence, Eq. (12) has two integral curves emerging from the origin 

- -  (? + b) • ]/-iV -+- b) 2 + 4720 
qa = • xi = 2? ~ , 

wherex ~ > 0 and • < 0. 
cally valid(OA in Fig. i). 
form 

qa = (1 - -? /b )  qp for 0 ~ q p ' < q 0 ,  

neglecting terms of the order Tab -~ and higher. 

Since qa and qp must be negative, only one curve (x~ > 0) is physi- 
Taking into account that y/b << i, we write this solution in the 

Yqa in the denominator by yqp: 

b (qp---qa). 
? (1 + ~) qo 

We linearize Eq. (13) by replacing 

dqa 

dqp 

The general solution of this equation 

qa ---- K exp [- -  bqp y-~ (1 + ]')-~ qo I ] .4- qp- -  ? (1 + ?) qob-L 

(14) 

(13a) 

where K is a constant of integration, can be simplified by dropping the first term, in which 
the index of the exponent is a large negative number, and qp~ qo. Hence, in the considered 
approximation the integral curve for the interval qo ~ qp < 1 is a straight line (AB in Fig. 
i) 

qa = qp--Tqo b-~ for qo ~ q p <  I, (15) 

The solutions are joined at the point A(qo, qo -- qoyb-1). 

Thus, the linearization of Eq. (13) lies within the limits of the selected accuracy. 
The straight line (15) intersects the vertical qp = 1 at point B (i, 1 -- Yqob -~) and, hence, 
the third portion of the integral curve coincides with segment BC (Fig. i). We determine 
the explicit form of the wave solution. Substituting (14) in (i0), we obtain 

q p =  qoexp(--  1 - -  ?) (~ - -  ~o) for ' ~ o ,  (16) 

where the constant of integration ~o is chosen to satisfy the condition qp(~O) = qo, while 
function qa(~) is determined from (14). 

When ~ < ~o, i.e., for qp > qo, the solution is found by substituting (15) in (I0). 
Joining the solutions at point ~ = ~o, we obtain, within the limits of the selected accuracy 

qp = - -qo( l  + ? ) [ ~ - - ~ 0 - - ( I  +.~,)-i] for ~ t . < ~ < ~ o ,  (17) 

where ~ is determined from the condition that when ~ = ~ the accumulation of type B de- 
posit ceases, i.e., qp(~) = i: 

~l = ~o + (I -+- ?)-t - -  q~-i (1 -6 ? ) - t  

The concentration of type A deposit in this case is 

From Eq. 

qa (~l) = 1 - -  Vqob-t (18) 

(9), taking into account the joining from (18), we can find the solution for 

qp= 1, q a :  1--.?qo b - i e x p ( ~ - ~ t )  for ~ < ~ i .  (19) 
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o go 

Fig. i. Phase trajectory of concentration 
wave in case of filtration of one-component 

suspensions. 

~p 

The value of ~o in this case is calculated on the basis of the law of conservation of matter 

t ~  v PP0 v PP0 / j 
T h i s  i n t e g r a l  i s  e a s i l y  s o l v e d  i n  q u a d r a t u r e  s b y  u s i n g  ( 1 6 ) ,  ( 1 7 ) ,  and ( 1 9 ) .  

The o b t a i n e d  wave s o l u t i o n  i s  a s y m p t o t i c  f o r  t h e  b o u n d a r y - v a l u e  p r o b l e m  o f  c l a r i f i c a -  
t i o n  d y n a m i c s ,  d e f i n e d  b y  t h e  c o n d i t i o n s  

u(O, T ) =  1, qa(X, O)=qp(X ,  0 ) =  0. (20) 

The t i m e  o f  f o r m a t i o n  o f  t h e  f r o n t  can be  d e t e r m i n e d  f rom t h e  s o l u t i o n  of  t h e  b o u n d a r y -  
v a l u e  p r o b l e m  ( 3 ) - ( 5 )  and ( 2 0 ) ,  and w i t h  a c c u r a c y  y i e  i s  e q u a l  t o  [ 7 ] :  Ton = 0 . 5 ( q o  + qF~) .  
For T i> To2 we can  u s e  t h e  a s y m p t o t i c  s o l u t i o n  ( 1 6 ) ,  ( 1 7 ) ,  and (19) and t h e n ,  as was shown 
e a r l i e r  i n  [ 1 4 ] ,  r e l a t i o n s  (1) and (2) become v a l i d .  

We note that a wave region occurs if the type A deposit is formed in correspondence with 
a linear isotherm, although we know from sorption dynamics [15] that there is no wavesolution 
in the case of a linear isotherm. The physical explanation of this is that the deposit con- 
sists mainly of type B and the wave of type B deposit "draws" the wave of type A deposit be- 
hind it. Hence, if we postulate that only type A deposit is formed (qp ~ 0), as in the 

models in [4, 5], the use of relations (i) and (2) is incorrect. 

3. We consider the conditions of existence of the wave regime of filtration of suspen- 
sions of more complex composition. Real suspensions usually contain many components, and 
the fractions may differ in geometric, physical, electrokinetic, and other properties. The 
presently used prefiltration methods of physicochemical treatment of suspensions (coagulation, 
flocculation, settling) allow us to consider them in a first approximation as binary mix- 
tures (e.g., mineral and organic fractions), and the treatment conditions usually provide 
more congenial filtration conditions for only one fraction- the dominant one. Hence, we 
will assume further that in the binary suspension the first fraction has a higher concentra- 
tion and better adhesive properties. The mathematical model of clarification of a binary 

suspension is a generalization of system (3)-(5) 

Ou(O Oq(a i) -+" Oq~) = 0,  ( 2 1 )  
OX -F ~h ~ OT 

Oq(ai) -- b(ai) u(n - -  e~q~aO], (22) 
~ti OT 

oq~,!) _ b(~)~. ~,,(~) q~2)) u(O, (23) 
OT- p , v~p , 

where X = ~(a)x/v; T = B(a)tCo/p ; u(i)=c(i)/c~ ~aa (i) = p(i),a/c(i)v(i)o ~a ; ~(i)up = pp(i)/Pp0; �9 p po 
(i), p pp(i)1 . . . .  (i) vii)/~ . b(i) o(i) /a(=) . (i) ~(i),~(2) (i) 

ei = co /co; ~i = lWpo; ~i -~~ ~a "Wpo' a = Pa 1~p ; Dp = Dp /Pp ; F a = 

<, o<. Pao /c ; ;i + ~a = Y, al + ~e = i, b = i. 

The above-indicated properties of a binary suspension enable us to obtain a more accurate 
form of the kinetic equations (22)-(23). We assume that the total capacity of the filter is 
determined by the first fraction, i.e., v~ = I, and the partial capacity of the second frac- 
tion va < i. The aging functions ~i must take into account the mutual effect of the fractions 
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and in the general form can be represented as aging functions for one-component suspensions, 
but with the dependence of the aging parameters on the concentrations taken into account: 

1 when q ~ l , <  qoi(q(p2,)<landq~, +q(p2,< 1, 
�9 (a(2,) a(,) qoi(q(D2))<q~,<landq~, + q~2, < 1, (24) =i--= q0i,.p J/~p when - -  

0 whenq~ 1 ) =  1 or q~) + qT)---- 1, 

1when q , 2 , <  qoz(q~l)) < v, andq~' + q ~ m <  1, -p 
o~2= qo2 (q(pl))/q~ 2) when qo2(q~O) < q(p2) < vzandq~t) + qi~ 2 ) <  1, (24a) 

o when = # '  + # '  = 1. 

Thus, the deposition of the second fraction ceases either in the case of attainment of 
the partial capacity v=, or in the case of attainment o~ the total capacity for the sum of 
the fractions. 

In the consideration of the possible existence of a wave solution for system (21)-(24) 
two cases should be noted: i) the partial wave velocity o~ of the second fraction is greater 

than the partial wave velocity 02 of the first fraction: 02 = c/(v2 + ~2) > (i -- ~)/(i -- v2 + 
~) = o~; 2) the reverse situation occurs: 02 ~o~. 

In the first case two concentration waves are formed: The wave of the second fraction 

moves first through the filtering bed with velocity o2, and is followed by the wave of the 
first fraction with velocity o~. It follows from the condition o~ < oa that 02 > (I + T)-~ > 
o~. Thus, through a bed with capacity Ppo the wave o2 moves more rapidly, and the wave oi 
more slowly, than the wave of a one-component suspension with total concentration co. Since 
the wave of the second concentration can determine the time of protective action tpr , it is 
clear that clarification of a binary suspension is less effective than that of a one-compo- 
nent suspension. 

We consider the solution of system (21)-(24) in a two-wave variant, introducing the de- 
pendence of the concentrations on the wave variables 

from which it follows that u(i) = ai(~iq~ i) + qp(i)). We find from Eqs. (22)-(23) that 

-- (ht~q(O = b(O [u(o -- eiq(~O], (26) 

- -  o,q~) ---- b~)~ (q~ 1) , q~2))u(i). (27) 

The s o l u t i o n  o f  s y s t e m  ( 2 5 ) - ( 2 7 )  r e d u c e s  t o  t h e  o n e - c o m p o n e n t  s o l u t i o n  i f  t h e  a g i n g  f u n c -  
t i o n s  a i c an  be r e d u c e d  to  ~o .  In  t h e  two-wave  v a r i a n t  t h i s  c o n d i t i o n  can  be  r e g a r d e d  as  f u l -  
f i l l e d  i n  t h e  a s y m p t o t i c  s e n s e .  In  f a c t ,  a t  s u f f i c i e n t l y  l a r g e  v a l u e s  o f  X and T t h e  waves  
"diverge" relative to one another, so that the wave oz moves through practically clean mater- 
ial, while wave oa moves through material that is practically spent for the second fraction. 
Hence in Eqs. (24) and (27) we_can make the aging parameters constant: qo=(qp ~))( ~- qo2(0) = 

qo2 and qo~(q~a)) --~ qo~(~2) = qol. 

System (26)-(27) can then be broken up into two independent subsystems, and the explicit 
form of the solution can be found by the phase-plane method, as for one-component models. We 
write the solution 6nly for the initial portions of the two waves 

(28) 

where v(l) = i -- v2; v(2) = v= and X -- o.T ~ ~o i- 
1 

It follows from solution (28), in particular, that after extraction of the main terms 
the concentration q~1) decreases exponentially with index--b~1)X, while q1! 2) decreases ex- 
ponentially with index --X. Since b~ I) >> i, the expressed hypothesis of ~symptotic indepen- 
dence of the concentration waves is-valid. 

We now consider the case of the ratio of partial concentrations, where o2~ oi and a 
two-wave solution is impossible. A single wave then occurs and all the concentrations depend 
on the single variable ~ = X -- oT. When ~ § the conditions 
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u (I) = l - - e ,  .r = ~, q ~ , ) = a ,  q(2)= 1 - - a .  q~l>_ q~_~)= 1 
- - p  

must be fulfilled. 

From the balance equation (21) we derive the equation for the wave velocity: o = s/(y -- 
DI + 1 -- a) = (i -- g)/(~1 + a) = (i + y)-~. Here the equations are linearly dependent, which 

enables us to determine the constant a = (i + y)(i -- ~) -- D~. The wave velocity is equal to 
the velocity of a one-component suspension that has an initial concentration equal to the 
sum of the partial concentrations and is filtered through a bed with the capacity of the 

passive zones Ppo and the active zones 9a(~ ) + p~o 2) . 

To find the solution of system (25)-(27) in the one-wave variant we need to specify the 
dependence of the aging parameters on the concentrations. However, to improve the method 
of calculation of the filtration parameters we need only find the solutions for the initial 
portion of the wave, when q~1).~minq0~ and q~2)~min#0~ �9 In this case the system takes the form 

~F~ (1 -F ?)-~ $r ~ = b~) [u~O - -  eiq~O], 
el , 

- -  (1 -]- ?) q~) ---- b~i)u <i) 

and is broken up into two independent subsystems for i = I and i = 2, the solution of which 

for u(i) has the form 

u t~) ----- (1 + ?)-~ (FiaT-' + 1 - - p ~  ~-2b~-~) qo~ exp (--1 - -F iaF1  ) ( ~ -  ~o), 

~(i)/B-(i)a p ai = Ei(l + Y) -- ~i' qoi is the aging parameter of the i-th fraction where bi 
of the deposit. 

Thus, the considered suspension filtration models can have wave solutions, which jus- 
tifies the use of the fundamental relations (i) and (2) for technological calculations. Us- 
ing the explicit form of the solutions it is possible to devise a method of determining the 
model parameters by improvement of the method of technological simulation [i]. 

NOTATION 

c, concentration of disperse phase of suspension; co, concentration at filter inlet; 
c(i), co(i), corresponding concentrations of the i-th fraction; H, available head on filter; 
ho, head loss on clean bed; m, rate of change of head loss in bed; n, wave velocity of con- 
centration front; t, time; tpr , time of protective action of filter; th, time available head 
loss; v, filtration rate; x, coordinate along filter bed; B a, mass-transfer coefficient for 
active zones of filter; ~p, the same for passive (stagnant) zones; ~i), ~i), the same for 
the i-th fraction; p, deposit concentration; Pa, for active zones; pp, for passive zones; 
Pao, capacity of active zones; ppo, capacity of passive zones; p~i), p~i), the same for the 

i-th fract ion. 
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INVESTIGATION OF NONLINEAR OSCILLATIONS OF A GAS IN OPEN PIPES 

R. G. Galiullin and G. G. Khalimov UDC 534.222.2 

Results are presented of measurements of velocity and pressure fluctuations in 
a pipe, open at one end, for nonlinear oscillations, excited by a piston describ- 
ing harmonic motions, in the linear and nonlinear resonance regions. 

It is known that nonlinear oscillations lead to a considerable intensification of var- 
ious heat and mass transfer processes [i], and this subject has therefore been investigated 
in many papers [2-24], which have studied the oscillations occurring in pipes. In some of 
these [2, 3, 16-24] oscillations in closed pipes have been studied, where a piston is moving 
harmonically at one end, and the other end, the passive end, is closed by a diaphragm. Other 
papers [2-15] have examined oscillations when the passive end is open to the surrounding 
medium. 

Periodic shock waves [3, i0, 13, 20, 24] can arise both in open and in closed pipes. 
The amplitude of pressure oscillations in closed pipes is proportional to the power n = i~ 
of the piston movement amplitude [2], while opinion varies as to the nature of the relation- 
ship in open pipes: some investigators assume n = i~ [2], while others [6, 7] take n = 1/2. 

We note that, along with a linear resonance at frequencies 

( 2 k - - l )  ~ao (1 )  ~ k =  , k =  i,  2, 3 . . . .  
2L 

nonlinear resonances with 

4L (2) 

may occur in open pipes, their existence being predicted theoretically in [12, 14, 15] and 
verified experimentally in [13]. 

The great majority of authors [3, 6, 9, 13, 20] have limited their measurements to pres- 
sure oscillations, and only in [5, 7] have attempts been made to measure velocity fluctua ~ 
tions, but these were conducted in the comparatively slight nonlinearity region, where the 
fluctuations are continuous functions of time. However, it is clear that full information 
on the oscillations can be obtained only with simultaneous measurement of pressure and velo- 
city. 

The present paper has attempted a simultaneous investigation of pressure and velocity 
fluctuations in open pipes, where shock waves may originate from the open end in the fre- 
quency region of linear and nonlinear resonances. 

Longitudinal oscillations of the gas column were created in a pipe with one end closed, 
while at the other end a plane piston was moved according to an harmonic law. In order to 
maximize the amplitude of oscillations, a compressor was used with a piston stroke of 21o = 

V. I. Ul'yanov-Lenin Kazansk State University. Translated from Inzhenerno-Fizicheskii 
Zhurnal, Vol. 37, No. 6, pp. 1043-1050, December, 1979. Original article submitted November 
9, 1978. 
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